
 
 

5-0 

5 5



 
 

5-1 

 
 
 

Chapter 5  
 

Capacitance and Dielectrics 
 
 
     
	

5.1	 Introduction ......................................................................................................... 5-3	
5.2	 Calculation of Capacitance ................................................................................. 5-4	

Example 5.1: Parallel-Plate Capacitor ..................................................................... 5-4	
Example 5.2: Cylindrical Capacitor ......................................................................... 5-6	
Example 5.3: Spherical Capacitor ............................................................................ 5-7	

5.3	 Storing Energy in a Capacitor ............................................................................. 5-8	
5.3.1	 Energy Density of the Electric Field .......................................................... 5-10	
Example 5.4: Electric Energy Density of Dry Air ................................................. 5-11	
Example 5.5: Energy Stored in a Spherical Shell .................................................. 5-11	

5.4	 Dielectrics ......................................................................................................... 5-12	
5.4.1	 Polarization ................................................................................................ 5-14	
5.4.2	 Dielectrics without Battery ........................................................................ 5-17	
5.4.3	 Dielectrics with Battery ............................................................................. 5-18	
5.4.4	 Gauss’s Law for Dielectrics ....................................................................... 5-19	
Example 5.6: Capacitance with Dielectrics ........................................................... 5-21	

5.5	 Creating Electric Fields .................................................................................... 5-22	
5.5.1	 Creating an Electric Dipole Movie ............................................................ 5-22	
5.5.2	 Creating and Destroying Electric Energy Movie ....................................... 5-24	

5.6	 Summary ........................................................................................................... 5-25	
5.7	 Appendix: Electric Fields Hold Atoms Together ............................................. 5-27	

5.7.1	 Ionic and van der Waals Forces ................................................................. 5-27	
5.8	 Problem-Solving Strategy: Calculating Capacitance ........................................ 5-29	
5.9	 Solved Problems ............................................................................................... 5-31	

5.9.1	 Capacitor Filled with Two Different Dielectrics ....................................... 5-31	
5.9.2	 Capacitor with Dielectrics .......................................................................... 5-32	
5.9.3	 Capacitor Connected to a Spring ............................................................... 5-33	

5.10	 Conceptual Questions ....................................................................................... 5-34	
5.11	 Additional Problems ......................................................................................... 5-35	

5.11.1	Capacitors and Dielectrics .......................................................................... 5-35	



 
 

5-2 

5.11.2	Gauss’s Law in the Presence of a Dielectric .............................................. 5-35	
5.11.3	Gauss’s Law and Dielectrics ...................................................................... 5-36	
5.11.4	A Capacitor with a Dielectric ..................................................................... 5-36	
5.11.5	 Force on the Plates of a Capacitor .............................................................. 5-37	
5.11.6	Energy Density in a Capacitor with a Dielectric ........................................ 5-38	

 



 
 

5-3 

Capacitance and Dielectrics 
 
 
5.1 Introduction  
 
A capacitor is a device that stores electric charge.  Capacitors vary in shape and size, but 
the basic configuration is two conductors carrying equal but opposite charges (Figure 
5.1.1). Capacitors have many important applications in electronics. Some examples 
include storing electric potential energy, delaying voltage changes when coupled with 
resistors, filtering out unwanted frequency signals, forming resonant circuits and making 
frequency-dependent and independent voltage dividers when combined with resistors. 
Some of these applications will be discussed in latter chapters. 
 

 
 

Figure 5.1.1 Basic configuration of a capacitor. 
 
In the uncharged state, the charge on either one of the conductors in the capacitor is zero. 
During the charging process, a charge  Q  is moved from one conductor to the other one, 
giving one conductor a charge, and the other one a charge  −Q . A potential difference 
 ΔV is created, with the positively charged conductor at a higher potential than the 
negatively charged conductor. Note that whether charged or uncharged, the net charge on 
the capacitor as a whole is zero.  
 
The simplest example of a capacitor consists of two conducting plates of area A , which 
are parallel to each other, and separated by a distance d, as shown in Figure 5.1.2. 
 

 
 

Figure 5.1.2 A parallel-plate capacitor 
 
Experiments show that the amount of charge  Q  stored in a capacitor is linearly 
proportional to  ΔV , the electric potential difference between the plates. Thus, we may 
write 
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   Q = C | ΔV | . (5.1.1) 
 
where  C  is a positive proportionality constant called capacitance.  Physically, 
capacitance is a measure of the capacity of storing electric charge for a given potential 
difference  ΔV . The SI unit of capacitance is the farad  [F] : 
 

 1 F = 1 farad =  1 coulomb volt = 1 C V . 
 
A typical capacitance that one finds in a laboratory is in the picofarad ( 1 pF = 10−12 F ) to 
millifarad range, ( 1 mF = 10−3 F=1000µF; 1µF = 10−6 F ). 
 
Figure 5.1.3(a) shows the symbol that is used to represent capacitors in circuits. For a 
polarized fixed capacitor that has a definite polarity, Figure 5.1.3(b) is sometimes used.   
 

(a)  (b) 
 

Figure 5.1.3 Capacitor symbols. 
 
5.2 Calculation of Capacitance 
 
Let’s see how capacitance can be computed in systems with simple geometry. 
 

Example 5.1: Parallel-Plate Capacitor 
 

Consider two metallic plates of equal area A separated by a distance d, as shown in 
Figure 5.2.1 below. The top plate carries a charge +Q while the bottom plate carries a 
charge –Q. The charging of the plates can be accomplished by means of a battery, which 
produces a potential difference. Find the capacitance of the system. 
 

 
 

Figure 5.2.1    The electric field between the plates of a parallel-plate capacitor 
 
Solution: To find the capacitance C, we first need to know the electric field between the 



 
 

5-5 

plates. A real capacitor is finite in size. Thus, the electric field lines at the edge of the 
plates are not straight lines, and the field is not contained entirely between the plates.  
This is known as edge effects, and the non-uniform fields near the edge are called the 
fringing fields. In Figure 5.2.1, the field lines are drawn incorporating edge effects. 
However, in what follows, we shall ignore such effects and assume an idealized situation, 
where field lines between the plates are straight lines, and zero outside.  
 
In the limit where the plates are infinitely large, the system has planar symmetry and we 
can calculate the electric field everywhere using Gauss’s law given in Eq. (3.2.5): 
 

 
    

E

⋅ d A


S
∫∫ =

qenc

ε0

.  

 
By choosing a Gaussian “pillbox” with cap area  ′A  to enclose the charge on the positive 
plate (see Figure 5.2.2), the electric field in the region between the plates is 
 

 
  
EA' =

qenc

ε0

=
σ A'
ε0

   ⇒   E =
σ
ε0

. (5.2.1) 

 
The same result has also been obtained in Section 3.8.1 using the superposition principle. 
 

 
 

Figure 5.2.2   Gaussian surface for calculating the electric field between the plates. 
 
The potential difference between the plates is  
 

 
   
ΔV =V− −V+ = −


E ⋅ d s

+

−

∫ = −Ed , (5.2.2) 

 
where we have taken the path of integration to be a straight line from the positive plate to 
the negative plate following the field lines (Figure 5.2.2). Because the electric field lines 
are always directed from higher potential to lower potential,  V− <V+ . However, in 
computing the capacitance C, the relevant quantity is the magnitude of the potential 
difference: 
  |ΔV |= Ed , (5.2.3) 
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and its sign is immaterial. From the definition of capacitance, we have 

 
   
C =

Q
|ΔV |

=
ε0 A
d

(parallelplate) . (5.2.4) 

 
Note that C depends only on the geometric factors A and d. The capacitance C increases 
linearly with the area A since for a given potential difference  ΔV , a bigger plate can hold 
more charge. On the other hand, C is inversely proportional to d, the distance of 
separation because the smaller the value of d, the smaller the potential difference   | ΔV | 
for a fixed Q. 

Example 5.2: Cylindrical Capacitor 
 

Consider next a solid cylindrical conductor of radius a surrounded by a coaxial 
cylindrical shell of inner radius b, as shown in Figure 5.2.3. The length of both cylinders 
is L and we take this length to be much larger than b− a, the separation of the cylinders, 
so that edge effects can be neglected. The capacitor is charged so that the inner cylinder 
has charge +Q while the outer shell has a charge –Q. What is the capacitance? 

 

 (a)  (b) 
 

Figure 5.2.3   (a) A cylindrical capacitor. (b) End view of the capacitor. The electric field 
is non-vanishing only in the region a < r < b.  
 
Solution: 
 
To calculate the capacitance, we first compute the electric field everywhere. Due to the 
cylindrical symmetry of the system, we choose our Gaussian surface to be a coaxial 
cylinder with length    < L  and radius r where  a < r < b . Using Gauss’s law, we have 
 

 
     

E

⋅ d A


S
∫∫ = EA = E 2πr( ) = λ

ε0

    ⇒      E = λ
2πε0r

, (5.2.5) 

 
where   λ = Q / L  is the charge per unit length. Notice that the electric field is non-
vanishing only in the region a r b< < . For r a< , the enclosed charge is enc 0q =  because 
in electrostatic equilibrium any charge in a conductor must reside on its surface. Similarly, 
for r b> , the enclosed charge is enc 0q λ λ= − =   since the Gaussian surface encloses 
equal but opposite charges from both conductors. The potential difference is given by 
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0 0

ln
2 2

b

b a ra

b

a

dr bV V V E dr
r a

λ λ
πε πε

⎛ ⎞Δ = − = − = − = − ⎜ ⎟⎝ ⎠∫ ∫ , (5.2.6) 

 
where we have chosen the integration path to be along the direction of the electric field 
lines. As expected, the outer conductor with negative charge has a lower potential. The 
capacitance is then  
 

 0

0

2
| | ln( / ) / 2 ln( / )

LQ LC
V b a b a

πελ
λ πε

= = =
Δ

. (5.2.7) 

 
Once again, we see that the capacitance C depends only on the length L, and the radii a 
and b. 

Example 5.3: Spherical Capacitor 
 
As a third example, let’s consider a spherical capacitor which consists of two concentric 
spherical shells of radii a and b, as shown in Figure 5.2.4. The inner shell has a charge 
+Q uniformly distributed over its surface, and the outer shell an equal but opposite 
charge –Q. What is the capacitance of this configuration? 
 

  
        (a)              (b) 

 
Figure 5.2.4 (a) spherical capacitor with two concentric spherical shells of radii a and b. 
(b) Gaussian surface for calculating the electric field. 
 
Solution: The electric field is non-vanishing only in the region a r b< < . Using Gauss’s 
law, we obtain 

 
    

E

⋅ dA


S
∫∫ = Er A = Er (4π r 2 ) = Q

ε0

. (5.2.8) 

 
The radial component of the electric field is then 
 

 2

1
4r

o

Q
E

rπε
= . (5.2.9) 
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Therefore, the potential difference between the two conducting shells is: 
 

2
0 0 0

1 1
4 4 4

b b

b a ra a

Q dr Q Q b aV V V E dr
r a b abπε πε πε

−⎛ ⎞ ⎛ ⎞Δ = − = − = − = − − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∫ ∫ ,   (5.2.10) 

 
which yields for the capacitance 
 

 04
| |
Q abC
V b a

πε ⎛ ⎞= = ⎜ ⎟Δ −⎝ ⎠
. (5.2.11) 

 
The capacitance C depends only on the radii a and b. 
 
An “isolated” conductor (with the second conductor placed at infinity) also has a 
capacitance. In the limit where ∞→b , the above equation becomes  
 

 0 0 0lim lim 4 lim 4 4
1

b b b

ab aC a
ab a
b

πε πε πε
→∞ →∞ →∞

⎛ ⎞= = =⎜ ⎟− ⎛ ⎞⎝ ⎠ −⎜ ⎟⎝ ⎠

. (5.2.12) 

 
Thus, for a single isolated spherical conductor of radius R, the capacitance is 
 
 04C Rπε= . (5.2.13) 
 
The above expression can also be obtained by noting that a conducting sphere of radius R 
with a charge Q uniformly distributed over its surface has 0/ 4V Q Rπε= , where infinity 
is the reference point at zero potential, ( ) 0V ∞ = . Using our definition for capacitance, 
 

 0
0

4
| | / 4
Q QC R
V Q R

πε
πε

= = =
Δ

. (5.2.14) 

 
As expected, the capacitance of an isolated charged sphere only depends on the radius R.  
    
5.3 Storing Energy in a Capacitor 
 
A capacitor can be charged by connecting the plates to the terminals of a battery, which 
are maintained at a potential difference VΔ  called the terminal voltage. 
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Figure 5.3.1 Charging a capacitor. 
 
The connection results in sharing the charges between the terminals and the plates. For 
example, the plate that is connected to the (positive) negative terminal will acquire some 
(positive) negative charge. The sharing causes a momentary reduction of charges on the 
terminals, and a decrease in the terminal voltage. Chemical reactions are then triggered to 
transfer more charge from one terminal to the other to compensate for the loss of charge 
to the capacitor plates, and maintain the terminal voltage at its initial level. The battery 
could thus be thought of as a charge pump that brings a charge Q  from one plate to the 
other.  
 
As discussed in the introduction, capacitors can be used to stored electrical energy. The 
amount of energy stored is equal to the work done to charge it. During the charging 
process, the battery does work to remove charges from one plate and deposit them onto 
the other.  

 

 
 
Figure 5.3.1 Work is done by an external agent in bringing +dq from the negative plate and 
depositing the charge on the positive plate.  
 
Let the capacitor be initially uncharged.  In each plate of the capacitor, there are many 
negative and positive charges, but the number of negative charges balances the number of 
positive charges, so that there is no net charge, and therefore no electric field between the 
plates.  We have a magic bucket and a set of stairs from the bottom plate to the top plate 
(Figure 5.3.1).   We show a movie of what is essentially this process in Section 5.5.2 
below.   
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We start out at the bottom plate, fill our magic bucket with a charge dq+ , carry the 
bucket up the stairs and dump the contents of the bucket on the top plate, charging it up 
positive to charge dq+ .  However, in doing so, the bottom plate is now charged to dq− . 
Having emptied the bucket of charge, we now descend the stairs, get another bucketful of 
charge +dq, go back up the stairs and dump that charge on the top plate.  We then repeat 
this process over and over.  In this way we build up charge on the capacitor, and create 
electric field where there was none initially.   
 
Suppose the amount of charge on the top plate at some instant is q+ , and the potential 
difference between the two plates is | | /V q CΔ = . To dump another bucket of charge 
dq+  on the top plate, the amount of work done to overcome electrical repulsion is 

| |dW V dq= Δ . If at the end of the charging process, the charge on the top plate is Q+ , 
then the total amount of work done in this process is 

 

 
2

0 0

1| |
2

Q Q q QW dq V dq
C C

= Δ = =∫ ∫ . (5.3.1) 

 
This is equal to the electrical potential energy EU of the system:  
 

 
2

21 1 1| | | |
2 2 2E
QU Q V C V
C

= = Δ = Δ . (5.3.2) 

 

5.3.1 Energy Density of the Electric Field 
 
One can think of the energy stored in the capacitor as being stored in the electric field 
itself. In the case of a parallel-plate capacitor, with 0 /C A dε= and | |V EdΔ = , we have  
 

 
  
U E = 1

2
C | ΔV |2= 1

2
ε0 A
d

(Ed)2 = 1
2
ε0 E2 ( Ad) . (5.3.3) 

 
Because the quantity Ad represents the volume between the plates, we can define the 
electric energy density as 
 

 2
0

1
Volume 2

E
E

Uu Eε= = . (5.3.4) 

 
The energy density Eu is proportional to the square of the electric field. Alternatively, one 
may obtain the energy stored in the capacitor from the point of view of external work. 
Because the plates are oppositely charged, force must be applied to maintain a constant 
separation between them. From Eq. (3.4.7), we see that a small patch of charge 

( )q AσΔ = Δ  experiences an attractive force 2
0( ) / 2F Aσ εΔ = Δ . If the total area of the 

plate is A, then an external agent must exert a force 2
ext 0/ 2F Aσ ε=  to pull the two plates 
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apart. Since the electric field strength in the region between the plates is given by 
0/E σ ε= , the external force can be rewritten as 

 

 20
ext 2
F E Aε= . (5.3.5) 

 
The external force extF  is independent of d . The total amount of work done externally to 
separate the plates by a distance d is then 
 

 
2

0
ext ext ext 2

E AW d F d dε⎛ ⎞
= ⋅ = = ⎜ ⎟

⎝ ⎠
∫ F s
  , (5.3.6) 

 
consistent with Eq. (5.3.3). Because the potential energy of the system is equal to the 
work done by the external agent, we have that the energy density 2

ext 0/ / 2Eu W Ad Eε= = . 
In addition, we note that the expression for Eu  is identical to Eq. (3.4.8) in Chapter 3. 
Therefore, the electric energy density Eu can also be interpreted as electrostatic pressure 
P. 
 

Example 5.4: Electric Energy Density of Dry Air 
 
The breakdown field strength at which dry air loses its insulating ability and allows a 
discharge to pass through is 63 10 V/mbE = × . At this field strength, the electric energy 
density is: 

 
  
uE = 1

2
ε0E2 = 1

2
(8.85×10-12 C2 /N ⋅m2 )(3×106 V/m)2 = 40 J/m3 . (5.3.7) 

 

Example 5.5: Energy Stored in a Spherical Shell 
 
Find the energy stored in a metallic spherical shell of radius a and charge Q. 
 
Solution: The electric field associated of a spherical shell of radius a is (Example 3.3) 
 

 

    

E

=

Q
4πε0r

2 r̂, r > a

0, r < a.

⎧

⎨
⎪

⎩
⎪

 (5.3.8) 

 
The corresponding energy density is  
 

 
2

2
0 2 4

0

1
2 32E

Qu E
r

ε
π ε

= = , (5.3.9) 
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outside the sphere, and zero inside. Since the electric field is non-vanishing outside the 
spherical shell, we must integrate over the entire region of space from r a=  to r = ∞ . In 
spherical coordinates, with 24dV r drπ= , we have 
 

 
2 2 2

2
2 4 2
0 0 0

14
32 8 8 2E a a

Q Q dr QU r dr QV
r r a

π
π ε πε πε

∞ ∞⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
∫ ∫ , (5.3.10) 

 
where 0/ 4V Q aπε=  is the electric potential on the surface of the shell, with ( ) 0V ∞ = . 
We can readily verify that the energy of the system is equal to the work done in charging 
the sphere. To show this, suppose at some instant the sphere has charge q and is at a 
potential 0/ 4V q aπε= . The work required to add an additional charge dq to the system 
is dW Vdq= . Thus, the total work is 
 

                           
2

0
0 04 8

Q q QW dW Vdq dq
a aπε πε

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
∫ ∫ ∫ .                               (5.3.11) 

 
 
5.4 Dielectrics 
 
In many capacitors there is an insulating material such as paper or plastic between the 
plates. Such material, called a dielectric, can be used to maintain a physical separation of 
the plates. Since dielectrics break down less readily than air, charge leakage can be 
minimized, especially when high voltage is applied.  

 
Experimentally it was found that capacitance C increases when the space between the 
conductors is filled with dielectrics. To see how this happens, suppose a capacitor has a 
capacitance 0C  when there is no material between the plates. When a dielectric material 
is inserted to completely fill the space between the plates, the capacitance increases to 

 
 0eC Cκ= , (5.4.1) 
 
where eκ  is called the dielectric constant. In the Table below, we show some dielectric 
materials with their dielectric constant. Experiments indicate that all dielectric materials 
have 1eκ > . Note that every dielectric material has a characteristic dielectric strength that 
is the maximum value of electric field before breakdown occurs and charges begin to 
flow.  
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Material eκ  Dielectric strength  (106 V / m)  

Air 1.00059 3 

Paper 3.7 16 

Glass 4−6 9 

Water 80 − 

 
The increase of capacitance in the presence of a dielectric can be explained from a 
molecular point of view. We shall show that eκ  is a measure of the dielectric response to 
an external electric field. There are two types of dielectrics. The first type are polar 
dielectrics, which are dielectrics that have permanent electric dipole moments. An 
example of this type of dielectric is water. 
  

 
  

Figure 5.4.1 Orientations of polar molecules when (a) 0 =E 0


 and (b) 0 0≠E


. 
 
As depicted in Figure 5.4.1, the orientation of polar molecules is random in the absence 
of an external field. When an external electric field 0E


 is present, a torque is set up that 

causes the molecules to align with 0E


. However, the alignment is not complete due to 
random thermal motion. The aligned molecules then generate an electric field that is 
opposite to the applied field but smaller in magnitude. 
 
The second type are non-polar dielectrics, which are dielectrics that do not possess a 
permanent electric dipole moment. Placing a non-polar dielectric material in an externally 
applied electric field can induce electric dipole moments. 

 

  
 

Figure 5.4.2   Orientations of non-polar molecules when (a) 0 =E 0


 and (b) 0 ≠E 0


. 
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Figure 5.4.2 illustrates the orientation of non-polar molecules with and without an 
external field 0E


. When 0 ≠E 0


, (Figure 5.4.2(b)), the induced surface charges on the 

faces produces an electric field    

EP  in the direction opposite to 0E


, leading to 

    E

=

E0 +


EP , with 0| | | |<E E

 
. Below we show how the induced electric field    


EP  is 

calculated.  
 

5.4.1 Polarization 
 
We have shown that dielectric materials consist of many permanent or induced electric 
dipoles.  One of the concepts crucial to the understanding of dielectric materials is the 
average electric field produced by many little electric dipoles that are all aligned.  
Suppose we have a piece of material in the form of a cylinder with area A  and height h, 
as shown in Figure 5.4.3, and that it consists of N electric dipoles, each with electric 
dipole moment p  spread uniformly throughout the volume of the cylinder.   
 

 
 

Figure 5.4.3 A cylinder with uniform dipole distribution. 
 
We furthermore assume for the moment that all of the electric dipole moments p  are 
aligned with the axis of the cylinder. Since each electric dipole has its own electric field 
associated with it, in the absence of any external electric field, if we average over all the 
individual fields produced by the dipole, what is the average electric field just due to the 
presence of the aligned dipoles?   
 
To answer this question, let us define the polarization vector P


 to be the net electric 

dipole moment vector per unit volume: 
 

 
1

1
Volume

N

i
i=

= ∑P p
  . (5.4.2) 
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In the case of our cylinder, where all the dipoles are perfectly aligned, the magnitude of 
P


 is equal to 

 NpP
Ah

= . (5.4.3) 

 
The direction of P


 is parallel to the aligned dipoles.   

 
Now, what is the average electric field these dipoles produce? All the little ± charges 
associated with the electric dipoles in the interior of the cylinder in Figure 5.4.4(a) are 
replaced by two equivalent charges, PQ± , on the top and bottom of the cylinder, 
respectively in Figure 5.4.4(b).  
 

   
(a)     (b) 

Figure 5.4.4 (a) A cylinder with uniform dipole distribution. (b) Equivalent charge 
distribution.  
 
The equivalence can be seen by noting that in the interior of the cylinder, positive charge 
at the top of any one of the electric dipoles is canceled on average by the negative charge 
of the dipole just above it.  The only places where cancellations do not take place are at 
the top and bottom of the cylinder, where there are no additional adjacent dipoles.  Thus 
the interior of the cylinder appears uncharged in an average sense (averaging over many 
dipoles). The top surface of the cylinder carries a positive charge and the bottom surface 
of the cylinder carries a negative charge.   
 
How do we find an expression for the equivalent charge PQ  in terms of quantities we 
know?  The simplest way is to require that the electric dipole moment PQ  produces, 

PQ h , is equal to the total electric dipole moment of all the little electric dipoles. This 
gives PQ h Np= , hence 

 P
NpQ
h

= . (5.4.4) 
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To compute the electric field produced by PQ , we note that the equivalent charge 
distribution resembles that of a parallel-plate capacitor, with an equivalent surface charge 
density Pσ  that is equal to the magnitude of the polarization: 
 

 P
P
Q Np P
A Ah

σ = = = . (5.4.5) 

 
The SI units of polarization density, P , are 3(C m)/m⋅ , or 2C/m , which are the same 
units as surface charge density. In general if the polarization vector makes an angle θ  
with n̂ , the outward normal vector of the surface, the surface charge density would be  
 
 ˆ cosP Pσ θ= ⋅ =P n


. (5.4.6) 

 
The equivalent charge system will produce an average electric field of magnitude 

0/PE P ε= . Because the direction of this electric field is opposite to the direction of P


, 
in vector notation, we have 
 
 0/P ε= −E P

 
. (5.4.7) 

 
The average electric field of all these dipoles is opposite to the direction of the dipoles 
themselves. It is important to realize that this is just the average field due to all the 
dipoles.  If we go close to any individual dipole, we will see a very different field. 
 
We have assumed here that all our electric dipoles are aligned.  In general, if these 
dipoles are randomly oriented, then the polarization P


 given in Eq. (5.4.2) will be zero, 

and there will be no average field due to their presence.  If the dipoles have some 
tendency toward a preferred orientation, then ≠P 0


, leading to a non-vanishing average 

field PE


. 
 
Let us now examine the effects of introducing a dielectric material into a system.  We 
shall first assume that the atoms or molecules comprising the dielectric material have a 
permanent electric dipole moment.  If left to themselves, these permanent electric dipoles 
in a dielectric material never line up spontaneously, so that in the absence of any applied 
external electric field, =P 0


 due to the random alignment of dipoles, and the average 

electric field PE


 is zero as well.  However, when we place the dielectric material in an 

external field 0E


, the dipoles will experience a torque    

τ = p ×


E0 that tends to align the 

dipole vectors p  with 0E


.  The effect is a net polarization P


 parallel to 0E


, and therefore 

the dipoles produce an average electric field, PE


, anti-parallel to 0E


, i.e., that will tend 

to reduce the total electric field strength below 
   

E0 . The electric field E


 is the sum of 

these two fields: 
 0 0 0/P ε= + = −E E E E P

    
. (5.4.8) 
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In most cases, the polarization P


 is not only in the same direction as 0E


, but also linearly 

proportional to 0E


, and hence to E


 as well. This is reasonable because without the 

external field 0E


 there would be no alignment of dipoles and no polarization P


. We 

write the linear relation between P


 and E


 as 
 
 0 eε χ=P E

 
, (5.4.9) 

 
where eχ is called the electric susceptibility. Materials that obey this relation are called 
linear dielectrics. Combing Eqs. (5.4.8) and (5.4.7) yields 
 
 0 (1 )e eχ κ= + =E E E

  
, (5.4.10) 

where  
 (1 )e eκ χ= +  (5.4.11) 
 
is the dielectric constant. The dielectric constant eκ  is always greater than one since 

0eχ > .  This implies that 

 0
0

e

EE E
κ

= < . (5.4.12) 

 
Thus, we see that the effect of dielectric materials is always to decrease the electric field 
below what it would otherwise be.  
 
In the case of dielectric material where there are no permanent electric dipoles, a similar 
effect is observed because the presence of an external field 0E


 induces electric dipole 

moments in the atoms or molecules.  These induced electric dipoles are parallel to 0E


, 

again leading to a polarization P


 parallel to 0E


, and a reduction of the total electric field 
strength. 
 

5.4.2 Dielectrics without Battery 
 

As shown in Figure 5.4.5, a battery with a potential difference 0| |VΔ across its terminals 
is first connected to a capacitor   C0 , which holds a charge   Q0 = C0 | ΔV0 | . We then 
disconnect the battery, leaving   Q0 . The charge   Q0 is called the free charge and when the 
battery is disconnected does not change (because it has no conducting path off the plate). 
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Figure 5.4.5 Inserting a dielectric material between the capacitor plates while keeping the 
charge   Q0  constant 
 
If we then insert a dielectric between the plates (while keeping the free charge constant), 
experimentally it is found that the potential difference decreases by a factor of eκ : 
 

 
  
| ΔV | =

| ΔV0 |
κ e

. (5.4.13) 

 
This implies that the capacitance is changed to 
 

 0 0
0

0 0| | | | / | |e e
e

Q QQC C
V V V

κ κ
κ

= = = =
Δ Δ Δ

. (5.4.14) 

 
The capacitance has increased by a factor of eκ . The electric field within the dielectric is 
now 

 0 0 0| | / | || | 1e

e e

V V EVE
d d d

κ
κ κ

Δ ΔΔ ⎛ ⎞= = = =⎜ ⎟⎝ ⎠
. (5.4.15) 

 
In the presence of a dielectric, the electric field decreases by a factor of eκ . 

 

5.4.3 Dielectrics with Battery 
 

Consider a second case where a battery supplying a potential difference 0| |VΔ remains 
connected as the dielectric is inserted (Figure 5.4.6). Experimentally, it is found (first by 
Faraday) that the charge on the plates is increased by a factor eκ : 
 
   Q =κ eQ0 , (5.4.16) 
 
where   Q0  is the free charge on the plates in the absence of any dielectric. 
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Figure 5.4.6 Inserting a dielectric material between the capacitor plates while 
maintaining a constant potential difference 0| |VΔ .  
 
The capacitance becomes 
  

 0
0

0 0| | | |
e

e
QQC C

V V
κ κ= = =

Δ Δ
 (5.4.17) 

 
increasing because the battery has delivered more free charge to the plates resulting in the 
magnitude of the charge on either plate increasing. 
 
In either case, the new value of the capacitance does not depend on whether or not the 
battery is connected while the dielectric material is inserted. However, the electric field, 
and charge on the plates do depend on whether or not the battery was connected while the 
dielectric was inserted.  

5.4.4 Gauss’s Law for Dielectrics 
 
Consider again a parallel-plate capacitor shown in Figure 5.4.7: 
 

 
 

Figure 5.4.7 Gaussian surface in the absence of a dielectric. 
 
When no dielectric is present, the electric field 0E


 in the region between the plates can be 

found by using Gauss’s law:  
 

    
E

⋅ d

A

S
∫∫ = E0 A = Q

ε0

, ⇒ E0 =
Q

Aε0

= σ
ε0

. 
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With capacitance 

 
  
C0 =

Q
ΔV

= Q
E0d

=
Aε0

d
. (5.4.18) 

 
We have seen that when a dielectric is inserted (Figure 5.4.8), the capacitance increases 
by an amount 

 
  
C =κ eC0 =

κ eQ
ΔV

=
κ eQ
E0d

=
κ e Aε0

d
. (5.4.19) 

 
There is now an induced charge PQ  of opposite sign on the surface, and the net charge 
enclosed by the Gaussian surface is PQ Q− .  
 

 
 

Figure 5.4.8 Gaussian surface in the presence of a dielectric. 
 
Gauss’s law becomes 

 
    

E

⋅ d

A

S
∫∫ = EA =

Q − QP

ε0

. (5.4.20) 

 
The magnitude of the electric field has decreased between the plates 
 

 
0

PQ QE
Aε

−= . (5.4.21) 

 
However, we have just seen that the effect of the dielectric is to weaken the original field 
0E  by a factor eκ . Therefore, 

 0

0 0

P

e e

E Q QQE
A Aκ κ ε ε

−= = = . (5.4.22) 

 
from which the induced charge PQ  can be obtained as  
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 11P
e

Q Q
κ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. (5.4.23) 

 
In terms of the surface charge density (divide Eq. (5.4.23)) by the area of the plate, we 
have 

 11P
e

σ σ
κ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. (5.4.24) 

 
The limit as 1eκ = , the induced charge is zero, 0PQ = , which corresponds to the case of 
no dielectric material. Substituting Eq. (5.4.23) into Eq. (5.4.20), Gauss’s law with 
dielectric can be rewritten as,  
 

 
    


E ⋅d

A

S
∫∫ =

Qfree,enc

κ eε0

=
Qfree,enc

ε
, (5.4.25) 

 
where   

Qfree,enc is the free charge enclosed and 0eε κ ε=  is called the dielectric 
permittivity.  Alternatively, we may also write  
 
 

    


D ⋅d


A

S
∫∫  = Qfree,enc , (5.4.26) 

 
where 0ε κ=D E


 is called the electric displacement vector. 

Example 5.6: Capacitance with Dielectrics 
 
A non-conducting slab of thickness t, area A and dielectric constant eκ  is inserted into the 
space between the plates of a parallel-plate capacitor with spacing d, charge Q and area A, 
as shown in Figure 5.4.9(a). The slab is not necessarily halfway between the capacitor 
plates. What is the capacitance of the system? 
 

  
    (a)          (b) 

       
Figure 5.4.9 (a) Capacitor with a dielectric. (b) Electric field between the plates. 

 
Solution: To find the capacitance C, we first calculate the potential difference VΔ . We 
have already seen that in the absence of a dielectric, the electric field between the plates 
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is given by 0 0/E Q Aε= , and 0 /D eE E κ= when a dielectric of dielectric constant eκ  is 
present, as shown in Figure 5.4.9(b). The potential can be found by integrating the 
electric field along a straight line from the top to the bottom plates:   
 

 

  

ΔV = − Edl =
+

−

∫ − ΔV0 − ΔVD = −E0 (d − t) − EDt = − Q
Aε0

(d − t) − Q
Aε0κ e

t

= − Q
Aε0

d − t 1− 1
κ e

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,
 (5.4.27) 

              
where D DV E tΔ =  is the potential difference between the two faces of the dielectric. The 
capacitance is  

   0

| | 11
e

AQC
V

d t

ε

κ

= =
Δ ⎛ ⎞

− −⎜ ⎟
⎝ ⎠

. (5.4.28)                           (5.4.29) 

 
It is useful to check the following limits:  
 
(i) As 0,t→ i.e., the thickness of the dielectric approaches zero, we have 

0 0/C A d Cε= = , which is the expected result for no dielectric.  
 
(ii) As 1eκ → , we again have 0 0/C A d Cε→ = , and the situation also correspond to the 
case where the dielectric is absent.  
 
(iii) In the limit where ,t d→  the space is filled with dielectric, we 
have 0 0/e eC A d Cκ ε κ→ = . 
 
 
5.5 Creating Electric Fields 
 

5.5.1 Creating an Electric Dipole Movie 
  
Electric fields are created by electric charge.  If there is no electric charge present, and 
never had been any electric charge present in the past, then there would be no electric 
field anywhere is space.  How is electric field created and how does it come to fill up 
space?  To answer this, consider the following scenario in which we go from the electric 
field being zero everywhere in space to an electric field existing everywhere in space.   
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Figure 5.5.1   Creating an electric dipole. (a) Before any charge separation.  (b)  Just 
after the charges are separated.  (c) A long time after separation.  
http://youtu.be/zIIQNZ9OAF0 . 
 
Suppose we have a positive point charge sitting right on top of a negative electric charge, 
so that the total charge exactly cancels, and there is no electric field anywhere in space.  
Now let us pull these two charges apart slightly, so that a small distance separates them. 
If we allow them to sit at that distance for a long time, there will now be a charge 
imbalance – an electric dipole. The dipole will create an electric field.   
 
Let us see how this creation of electric field takes place in detail.  Figure 5.5.1 shows 
three frames of a movie of the process of separating the charges.  In Figure 5.5.1(a), there 
is no charge separation, and the electric field is zero everywhere in space.  Figure 5.5.1(b) 
shows what happens just after the charges are first separated. An expanding sphere of 
electric fields is observed. Figure 5.5.1(c) shows a long time after the charges are 
separated (that is, they have been at a constant distance from each other for a long time). 
An electric dipole has been created.  
  
What does this sequence tell us?  The following conclusions can be drawn: 
 
(1) Electric charge generates electric field — no charge, no field.   
 
(2) The electric field does not appear instantaneously in space everywhere as soon as 
there is unbalanced charge — the electric field propagates outward from its source at 
some finite speed.  This speed will turn out to be the speed of light, as we shall see later.   
 
(3) After the charge distribution settles down and becomes stationary, so does the field 
configuration.  The initial field pattern associated with the time dependent separation of 
the charge is actually a burst of “electric dipole radiation.”  We return to the subject of 
radiation at the end of this course.  Until then, we will neglect radiation fields. The field 
configuration left behind after a long time is just the electric dipole pattern discussed 
above.  
 
We note that the external agent does work when pulling the charges apart, and then must 
apply a force to keep them separate, since they attract each other as soon as they start to 
separate. In addition, the work also goes into providing the energy carried off by 
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radiation, as well as the energy needed to set up the final stationary electric field that we 
see in Figure 5.5.1(c). 
 

   http://youtu.be/CIGLshVujjM   
 

Figure 5.5.2 Creating the electric fields of two point charges by pulling apart two 
opposite charges initially on top of one another.  We artificially terminate the field lines 
at a fixed distance from the charges to avoid visual confusion. 
 
Finally, we ignore radiation and complete the process of separating our opposite point 
charges that we began in Figure 5.5.1.  The link in Figure 5.5.2 shows the complete 
sequence. When we finish and have moved the charges far apart, we see the characteristic 
radial field in the vicinity of a point charge.   
 

5.5.2 Creating and Destroying Electric Energy Movie 
 
Let us look at the process of creating electric energy in a different context.  We ignore 
energy losses due to radiation in this discussion.  Figure 5.5.3 shows one frame of a 
movie that illustrates the following process.   This movie is more or less analogous to the 
process we discussed in Section 5.3 above for charging a capacitor.   
   

 
Figure 5.5.3 Creating (http://youtu.be/O5fHvc4Edvg) and 
destroying (http://youtu.be/5G7j0d88NGc ) electric energy. 
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We start out with five negative electric charges and five positive charges, all at the same 
point in space.  Sine there is no net charge, there is no electric field.  Now we move one 
of the positive charges at constant velocity from its initial position to a distance L away 
along the horizontal axis. After doing that, we move the second positive charge in the 
same manner to the position where the first positive charge sits.  After doing that, we 
continue on with the rest of the positive charges in the same manner, until all the positive 
charges are sitting a distance L from their initial position along the horizontal axis. Figure 
5.5.3 shows the field configuration during this process.  We have color coded the “grass 
seeds” representation to represent the strength of the electric field.  Very strong fields are 
white, very weak fields are black, and fields of intermediate strength are yellow.   
 
Over the course of the “create” movie associated with Figure 5.5.3, the strength of the 
electric field grows as each positive charge is moved into place.  The electric energy 
flows out from the path along which the charges move, and is being provided by the 
agent moving the charge against the electric field of the other charges. The work that this 
agent does to separate the charges against their electric attraction appears as energy in the 
electric field.  We also have a movie of the opposite process linked to Figure 5.5.3.  That 
is, we return in sequence each of the five positive charges to their original positions.  At 
the end of this process we no longer have an electric field, because we no longer have an 
unbalanced electric charge.   

 
On the other hand, over the course of the “destroy” movie associated with Figure 5.5.3, 
the strength of the electric field decreases as each positive charge is returned to its 
original position.  The energy flows from the field back to the path along which the 
charges move, and is now being provided to the agent moving the charge at constant 
speed along the electric field of the other charges.  The energy provided to that agent as 
we destroy the electric field is exactly the amount of energy that the agent put into 
creating the electric field in the first place, neglecting radiative losses (such losses are 
small if we move the charges at speeds small compared to the speed of light).  This is a 
reversible process if we neglect such losses. That is, the amount of energy the agent puts 
into creating the electric field is exactly returned to that agent as the field is destroyed.   

 
There is one final point to be made.  Whenever electromagnetic energy is being created, 
an electric charge is moving (or being moved) against an electric field ( 0q ⋅ <v E

 ).  
Whenever electromagnetic energy is being destroyed, an electric charge is moving (or 
being moved) along an electric field ( 0q ⋅ >v E

 ).  When we return to the creation and 
destruction of magnetic energy, we will find this rule holds there as well.   
 
5.6 Summary 
 

• A capacitor is a device that stores electric charge and potential energy. The 
capacitance C of a capacitor is the ratio of the charge stored on the capacitor 
plates to the potential difference between them: 

 
| |
QC
V

=
Δ

.  
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System Capacitance 

Isolated charged sphere of radius R  04C Rπε=  

Parallel-plate capacitor of plate area A and plate separation d 0
AC
d

ε=  

Cylindrical capacitor of length L , inner radius a and outer radius b 02
ln( / )

LC
b a
πε=  

Spherical capacitor with inner radius a and outer radius b ( )04 abC
b a

πε=
−

 

  
• The work done in charging a capacitor to a charge Q is  

 

 
2

21 1| | | |
2 2 2
QU Q V C V
C

= = Δ = Δ . 

 
 This is equal to the amount of energy stored in the capacitor. 
 

• The electric energy can also be thought of as stored in the electric field E


. The 
energy density (energy per unit volume) is 

 

 2
0

1
2Eu Eε= . 

  
 The energy density Eu is equal to the electrostatic pressure on a surface. 
 

• When a dielectric material with dielectric constant eκ  is inserted into a 
capacitor, the capacitance increases by a factor eκ :  

  
 0eC Cκ= . 
 

• The polarization vector P


 is the electric dipole moment per unit volume: 
 

1

1 N

i
iV =

= ∑P p
  . 

 
• The induced electric field due to polarization is 

 
 0/P ε= −E P

 
. 
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• In the presence of a dielectric with dielectric constant eκ , the electric field 
becomes 

 0 0 /P eκ= + =E E E E
   

, 
 
 where 0E


 is the electric field without dielectric. 

 
5.7 Appendix: Electric Fields Hold Atoms Together 
 
In this Appendix, we illustrate how electric fields are responsible for holding atoms 
together. 
 

“…As our mental eye penetrates into smaller and smaller distances and 
shorter and shorter times, we find nature behaving so entirely differently 
from what we observe in visible and palpable bodies of our surroundings 
that no model shaped after our large-scale experiences can ever be "true".  
A completely satisfactory model of this type is not only practically 
inaccessible, but not even thinkable.  Or, to be precise, we can, of course, 
think of it, but however we think it, it is wrong.” 

 
Erwin Schroedinger  

5.7.1 Ionic and van der Waals Forces 
 
Electromagnetic forces provide the “glue” that holds atoms together—that is, that keep 
electrons near protons and bind atoms together in solids.  We present here a brief and 
very idealized model of how that happens from a semi-classical point of view.    
 

    
          (a) http://youtu.be/C1r9-56vbio                   (b) http://youtu.be/pNgFql43OvM  
 

Figure 5.7.1 (a) A negative charge and (b) a positive charge move past a massive 
positive particle at the origin and is deflected from its path by the stresses transmitted by 
the electric fields surrounding the charges.  
 
Figure 5.7.1(a) illustrates the examples of the stresses transmitted by fields, as we have 
seen before.  In Figure 5.7.1(a) we have a negative charge moving past a massive positive 
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charge and being deflected toward that charge due to the attraction that the two charges 
feel.  This attraction is mediated by the stresses transmitted by the electromagnetic field, 
and the simple interpretation of the interaction shown in Figure 5.7.1(b) is that the 
attraction is primarily due to a tension transmitted by the electric fields surrounding the 
charges.   

 
In Figure 5.7.1(b) we have a positive charge moving past a massive positive charge and 
being deflected away from that charge due to the repulsion that the two charges feel.  
This repulsion is mediated by the stresses transmitted by the electromagnetic field, as we 
have discussed above, and the simple interpretation of the interaction shown in Figure 
5.7.1(b) is that the repulsion is primarily due to a pressure transmitted by the electric 
fields surrounding the charges.  
 
Consider the interaction of four charges of equal mass shown in Figure 5.7.2.  Two of the 
charges are positively charged and two of the charges are negatively charged, and all 
have the same magnitude of charge.  The particles interact via the Coulomb force.   
 
We also introduce a quantum-mechanical “Pauli” force, which is always repulsive and 
becomes very important at small distances, but is negligible at large distances.  The 
critical distance at which this repulsive force begins to dominate is about the radius of the 
spheres shown in Figure 5.7.2.  This Pauli force is quantum mechanical in origin, and 
keeps the charges from collapsing into a point (i.e., it keeps a negative particle and a 
positive particle from sitting exactly on top of one another).    
 
Additionally, the motion of the particles is damped by a term proportional to their 
velocity, allowing them to "settle down" into stable (or meta-stable) states. 
 

   http://youtu.be/EMj10YIjkaY 
 

Figure 5.7.2 Four charges interacting via the Coulomb force, a repulsive Pauli force at 
close distances, with damping. 

 
When these charges are allowed to evolve from the initial state, the first thing that 
happens (very quickly) is that the charges pair off into dipoles. This is a rapid process 
because the Coulomb attraction between unbalanced charges is very large. This process is 
called "ionic binding", and is responsible for the inter-atomic forces in ordinary table salt, 
NaCl. After the dipoles form, there is still an interaction between neighboring dipoles, but 
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this is a much weaker interaction because the electric field of the dipoles falls off much 
faster than that of a single charge. This is because the net charge of the dipole is zero.  
When two opposite charges are close to one another, their electric fields “almost” cancel 
each other out.   
 
Although in principle the dipole-dipole interaction can be either repulsive or attractive, in 
practice there is a torque that rotates the dipoles so that the dipole-dipole force is 
attractive.   After a long time, this dipole-dipole attraction brings the two dipoles together 
in a bound state.  The force of attraction between two dipoles is termed a “van der Waals” 
force, and it is responsible for intermolecular forces that bind some substances together 
into a solid.   
 
 
5.8 Problem-Solving Strategy: Calculating Capacitance 
 
In this chapter, we have seen how capacitance C can be calculated for various systems. 
The procedure is summarized below:   
 
(1) Identify the direction of the electric field using symmetry. 
 
(2) Calculate the electric field everywhere. 
 
(3) Compute the electric potential difference ΔV. 
 
(4) Calculate the capacitance C using / | |C Q V= Δ . 
 
In the Table below, we illustrate how the above steps are used to calculate the 
capacitance of a parallel-plate capacitor, cylindrical capacitor and a spherical capacitor. 
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Capacitors Parallel-plate Cylindrical Spherical 

Figure 

   

(1) Identify the 
direction of the 

electric field 
using symmetry  

  

 
(2) Calculate 
electric field 
everywhere 

    

E

⋅ d A


S
∫∫ = EA =

Q
ε0

     E =
Q

Aε0

=
σ
ε0

 

    

E

⋅ d A


S
∫∫ = E 2πrl( ) = Q

ε0

    

            E = λ
2πε0r

 

    

E

⋅ dA


S
∫∫ = Er 4π r 2( ) = Q

ε0

             Er =
1

4πεo

Q
r 2

 

(3) Compute the 
electric 

potential 
difference ΔV 

V V V d

Ed

−

− + +
Δ = − = − ⋅

= −
∫ E s
   

0

ln
2

b

b a ra
V V V E dr

b
a

λ
πε

Δ = − = −

⎛ ⎞= − ⎜ ⎟⎝ ⎠

∫  

04

b

b a ra
V V V E dr

Q b a
abπε

Δ = − = −

−⎛ ⎞= − ⎜ ⎟⎝ ⎠

∫  

(4) Calculate 
C using 
/ | |C Q V= Δ  

0AC
d
ε=  02

ln( / )
lC

b a
πε=  04 abC

b a
πε ⎛ ⎞= ⎜ ⎟−⎝ ⎠
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5.9 Solved Problems 

5.9.1 Capacitor Filled with Two Different Dielectrics 
 
Two dielectrics with dielectric constants 1κ  and 2κ  each fill half the space between the 
plates of a parallel-plate capacitor as shown in Figure 5.9.1. Each plate has an area A and 
the plates are separated by a distance d. Compute the capacitance of the system. 
 
 

 
 

Figure 5.9.1 Capacitor filled with two different dielectrics. 
 
 
Solution: Because the potential difference  ΔV  on each half of the capacitor is the same, 
we may treat the system as being composed of two capacitors,   C1  and   C2 , with charges 

  ±Q1  and   ±Q2 on each half. The magnitude of the electric field is the same on each side 
because 

 
E =

ΔV
d

. 

 
We can apply Eq. (5.4.25) to determine the charge on each plate in terms of the electric 
field between the plates: 

  Qi = κ iε0 E( A / 2) . 
 
Therefore using our result for electric field, the charge is given by 
 

  
Qi =

κ iε0 ( A / 2) ΔV
d

. 

 
The capacitance of the system is then 
 

  
C =

Q1 + Q2

ΔV
=
ε0 A
2d

(κ1 +κ 2 ) = C1 + C2 , 

where 

 0 ( / 2) ,    1, 2i
i

AC i
d

κ ε= = . 
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5.9.2 Capacitor with Dielectrics  
 
Consider a conducting spherical shell with an inner radius a and outer radius c. Let the 
space between two surfaces be filed with two different dielectric materials so that the 
dielectric constant is 1κ  between a and b, and 2κ  between b and c, as shown in Figure 
5.9.4. Determine the capacitance of this system. 
 

 
 

Figure 5.9.4 Spherical capacitor filled with dielectrics. 
 
Solution: The system can be treated as two capacitors connected in series, since the total 
potential difference across the capacitors is the sum of potential differences across 
individual capacitors,   ΔV = ΔV1 + ΔV2  . Each shell has the same magnitude charge  

Q . 
The charge on each capacitor is related to the potential difference by 
 

 
ΔVi =

Q
Ci

. 

Each individual capacitor, satisfies 
 

  
Ci = κ iCi,0  

 
where   C0  is the capacitance for a vacuum spherical capacitor of inner radius 1r  and outer 
radius 2r , which we calculated in Example 5.3, 
 

  
Ci,0 = 4πε0

r1r2

r2 − r1

⎛

⎝⎜
⎞

⎠⎟
. 

Therefore the capacitances are  
 

  
C1 = κ14πε0

ab
b − a

⎛
⎝⎜

⎞
⎠⎟

 

  
C2 = κ 2 4πε0

bc
c − b

⎛
⎝⎜

⎞
⎠⎟

. 

The capacitance for the system therefore is  
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C =

Q
ΔV1 + ΔV2

=
Q

Q / C1 + Q / C2

=
C1C2

C1 + C2

. 

 
Using our results above we have that the capacitance of this system is given by 
 

  

C =
C1C2

C1 + C2

=
κ14πε0

ab
b − a

⎛
⎝⎜

⎞
⎠⎟
κ 2 4πε0

bc
c − b

⎛
⎝⎜

⎞
⎠⎟

κ14πε0

ab
b − a

⎛
⎝⎜

⎞
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Thus after some simplification we have that 
 

 0 1 2

2 1

4
( ) ( )

abcC
c b a a c b

πε κ κ
κ κ

=
− + −

.  

 
It is instructive to check the limit where 1 2, 1κ κ → . In this case, the above expression 
reduces to  

 0 0 04 4 4
( ) ( ) ( ) ( )

abc abc acC
c b a a c b b c a c a

πε πε πε= = =
− + − − −

  

 
which agrees with Eq. (5.2.11) for a spherical capacitor of inner radius a and outer radius 
c.  
 

5.9.3 Capacitor Connected to a Spring 
 
Consider an air-filled parallel-plate capacitor with one plate connected to a spring having 
a force constant k, and another plate held fixed. The system rests on a table top as shown 
in Figure 5.9.5. 

 
 

Figure 5.9.5 Capacitor connected to a spring. 
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If the charges placed on plates a and b are Q+  and Q− , respectively, how much does the 
spring expand? 
 
Solution: The spring force sF


 acting on plate a is given by  

 
 ˆ

s kx= −F i


.  
 
Similarly, the electrostatic force eF


 due to the electric field created by plate b is  

 

 
2

0 0

ˆ ˆ ˆ
2 2e

QQE Q
A

σ
ε ε

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
F i i i


,  

 
where A is the area of the plate. The charges on plate a cannot exert a force on itself, as 
required by Newton’s third law. Thus, only the electric field due to plate b is considered. 
At equilibrium the two forces cancel and we have 
 

 
02

Q
kx Q

Aε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,  

which gives 

 
2

02
Q

x
kAε

= . 

 
  
5.10 Conceptual Questions 
 
1. The charges on the plates of a parallel-plate capacitor are of opposite sign, and they 
attract each other.  To increase the plate separation, is the external work done positive or 
negative?  What happens to the external work done in this process? 
 
2. How does the stored energy change if the potential difference across a capacitor is 
tripled? 
 
3. Does the presence of a dielectric increase or decrease the maximum operating voltage 
of a capacitor? Explain.  
 
4. If a dielectric-filled capacitor is cooled down, what happens to its capacitance? 
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5.11 Additional Problems  

5.11.1 Capacitors and Dielectrics  
 
(a) A parallel-plate capacitor of area A and spacing d is filled with three dielectrics as 
shown in Figure 5.11.1. Each occupies 1/3 of the volume. What is the capacitance of this 
system? [Hint: Consider an equivalent system to be three parallel capacitors, and justify 
this assumption.] Show that you obtain the proper limits as the dielectric constants 
approach unity,   κ i → 1 .] 

 
 

Figure 5.11.1 
 
(b) This capacitor is now filled as shown in Figure 5.11.2. What is its capacitance? Use 
Gauss's law to find the field in each dielectric, and then calculate ΔV across the entire 
capacitor. Again, check your answer as the dielectric constants approach unity,   κ i → 1 . 
Could you have assumed that this system is equivalent to three capacitors in series?  
 

 
Figure 5.11.2 

 

5.11.2 Gauss’s Law in the Presence of a Dielectric 
 
A solid conducting sphere with a radius R1 carries a free charge Q and is surrounded by a 
concentric dielectric spherical shell with an outer radius R2 and a dielectric constant eκ . 
This system is isolated from other conductors and resides in air (  κ e ≈ 1), as shown in 
Figure 5.11.3.  

 
 

Figure 5.11.3 
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(a) Determine the displacement vector D


 everywhere, i.e. its magnitude and direction in 
the regions 1r R< , 1 2R r R< <  and 2r R> .  
 
(b) Determine the electric field E


 everywhere.  

5.11.3 Gauss’s Law and Dielectrics  
 
A cylindrical shell of dielectric material has inner radius a and outer radius b, as shown in 
Figure 5.11.4.                       

 
 

Figure 5.11.4 
 
The material has a dielectric constant 10eκ = . At the center of the shell there is a line 
charge running parallel to the axis of the cylindrical shell, with free charge per unit length 
λ.   
 
(a) Find the electric field for: r a< , a r b< <  and  r b> . 
 
(b) What is the induced surface charge per unit length on the inner surface of the 
spherical shell?  [Ans. 9 /10λ− .] 
 
(c) What is the induced surface charge per unit length on the outer surface of the 
spherical shell? [Ans. 9 /10λ+ .] 

5.11.4 A Capacitor with a Dielectric 
 
A parallel plate capacitor has a capacitance of 112 pF, a plate area of 96.5 cm2, and a 
mica dielectric (  κ e = 5.40 ).  At a 55 V potential difference, calculate 
 
(a) the electric field strength in the mica; [Ans. 13.4 kV/m.] 
 
(b) the magnitude of the free charge on the plates; [Ans.  6.16 nC.] 
 
(c) the magnitude of the induced surface charge; [Ans. 5.02 nC.] 
 
(d) the magnitude of the polarization P


 [Ans. 520 nC/m2.]    
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5.11.5 Force on the Plates of a Capacitor 
 
The plates of a parallel-plate capacitor have area A and carry total charge ±Q (see Figure 
5.12.6).  We would like to show that these plates attract  each other with a force given by  
F = Q2/(2εoA).   

     
 

Figure 5.12.6 
 

(a) Calculate the total force on the left plate due to the electric field of the right plate, 
using Coulomb's Law.  Ignore fringing fields.   
 
(b) If you pull the plates apart, against their attraction, you are doing work and that work 
goes directly into creating additional electrostatic energy.  Calculate the force necessary 
to increase the plate separation from  x  to  x + dx  by equating the work you do, d⋅F x

  , to 
the increase in electrostatic energy, assuming that the electric energy density is   ε0E2 / 2 , 
and that the charge Q remains constant. 
 
(c) Using this expression for the force, show that the force per unit area (the electrostatic 
stress) acting on either capacitor plate is given by   ε0E2 / 2 . This result is true for a 

conductor of any shape with an electric field E


at its surface. 
 
(d) Atmospheric pressure is 14.7 lb/in2, or 101,341 N/m2.  How large would E have to be 
to produce this force per unit area?  [Ans. 151 MV/m.  Note that Van de Graff 
accelerators can reach fields of 100 MV/m maximum before breakdown, so that 
electrostatic stresses are on the same order as atmospheric pressures in this extreme 
situation, but not much greater]. 
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5.11.6 Energy Density in a Capacitor with a Dielectric 
 
Consider the case in which a dielectric material with dielectric constant eκ completely 
fills the space between the plates of a parallel-plate capacitor. Show that the energy 
density of the field between the plates is / 2Eu = ⋅E D

 
 by the following procedure: 

 
(a) Write the expression / 2Eu = ⋅E D

 
 as a function of E and eκ  (i.e. eliminate D


).  

 
(b) Given the electric field and potential of such a capacitor with free charge q on it 
(problem 4-1a above), calculate the work done to charge up the capacitor from 0q =  to 
q Q= , the final charge. 
 
(c) Find the energy density Eu . 
 


